Análisis Matemático 2

Universidad del Norte Santo Tomás de Aquino

Valentín Ottaviano

2022

Índice

1	Fun		3
	1.1		3
		±	3
		*	3
			3
			4
		1	6
			6
			6
		1.3.3 Cuádricas	7
	1.4	Curvas de Nivel	8
	1.5	Límite y Continuidad de Funciones de n Variables	9
			9
		1.5.2 Definición de bola en \mathbb{R}^n	9
			9
		1.5.4 Criterio para inexistencia del límite doble	0
		1.5.5 Propiedades de los límites	0
		1.5.6 Continuidad de funciones de dos variables	0
2	Cál	lculo Diferencial en n-variables	2
	2.1	Derivadas Parciales	2
		2.1.1 Pendiente de una superficie	3
		2.1.2 Derivadas parciales de órdenes superiores	3
		2.1.3 Teorema de Clairaut (sobre derivadas parciales cruzadas)	3
		Funciones Diferenciables	3
		2.2.1 Definición de Incremento	3
		2.2.2 Definición de función diferenciable en (a,b)	3
		2.2.3 Teorema (condición suficiente para la diferenciabilidad)	3
		2.2.4 Definición de diferencial o diferencial total	3
		2.2.5 Aproximación con diferenciales (recta tangente)	4
		2.2.6 Aproximación con diferenciales (plano tangente)	4
		2.2.7 Teorema: Diferenciabilidad implica continuidad	5
			5
2.3		2.2.8 Diferencial de orden superior	
	2.3	2.2.8 Diferencial de orden superior	
	2.3		6
	2.3	Regla de la Cadena	6 6

Valentín Ottaviano ÍNDICE

	2.4.1	Caso 1: Una variable dependiente, una variable independiente	17
	2.4.2	Caso 2: Una variable dependiente, dos variables independientes	17
	2.4.3	Caso 3: 2 variables dependientes y dos variables independientes	18
2.5	Deriva	da Direccional	18
	2.5.1	Derivada direccional en funciones diferenciables	18
	2.5.2	Demostración: Derivada direccional en funciones diferenciables	18
	2.5.3	Vector gradiente ∇f	19
	2.5.4	Condición necesaria para diferenciabilidad	19
	2.5.5	Dirección de la máxima y mínima derivada direccional	20
	2.5.6	Valor máximo y mínimo de la derivada direccional	20
2.6	Valore	s extremos en funciones de dos variables	20
	2.6.1	Definición de extremo absoluto	20
	2.6.2	Definición de extremo relativo	21
	2.6.3	Punto Crítico	21
	2.6.4	Condición necesaria para la existencia de extremos relativos	21
	2.6.5	Punto Silla	21
	2.6.6	Condición suficiente para localizar extremos relativos	22

Unidad 1

Funciones de n-variables

1.1 Funciones de n-variables

Una función es una relación especial entre variables dependientes e independientes. Hasta el momento estudiamos funciones de una sola variable y = f(x).

Para funciones de n-variables utilizaremos la siguiente notación:

$$z = f(x,y) = x^2 - 3y + sen(x + y)$$

Donde z es la variable independiente, y el par (x, y) son las variables dependientes.

1.1.1 Definición de funciones de dos variables independientes

Una función \mathbf{f} , dos variables reales \mathbf{x} e \mathbf{y} , es una regla que asigna a cada par (x,y) de algún conjunto $D \subset \mathbb{R}^2$, un número real único z = f(x,y)

El dominio de una función de dos variables es el conjunto de los pares (x, y) que hacen real el valor f(x, y)

1.1.2 Definición de funciones de tres variables independientes

Una función \mathbf{f} , tres variables reales \mathbf{x}, \mathbf{y} y \mathbf{z} , es una regla que asigna a cada terna (x, y, z) de algún conjunto $D \subset \mathbb{R}^3$, un número real único w = f(x, y, z)

El dominio de una función de tres variables es el conjunto de las ternas (x, y, z) que hacen real el valor f(x, y, z)

1.1.3 Determinación del dominio

Ejemplo

$$z = f(x,y) = \frac{\sqrt{x+y+1}}{x-1}$$

La función **f** posee dos restricciones:

$$x+y+1 \ge 0$$

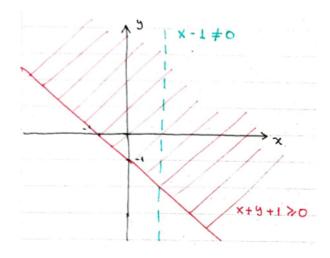
Si
$$x+y+1=0 \Rightarrow y=-x-1$$

$$x-1 \neq 0$$

Si
$$x - 1 = 0 \Rightarrow x = 1$$

$$dom f = \{(x, y) \in \mathbb{R}^2 / x + y + 1 \ge 0 \land x - 1 \ne 0\}$$

Por lo tanto, podemos graficar el dominio de ${f f}$ de la siguiente manera:



1.2 Gráfica de funciones de dos variables

La gráfica de z = f(x, y) es el conjunto de todos los (x, y, z) en el espacio tales que z = f(x, y) pertenece al dominio de z. Esta gráfica es una superficie en \mathbb{R}^3

Recta en \mathbb{R}^3

Para determinar la ecuación de la **recta** utilizamos un vector $\vec{v} = (a, b, c)$ que dará la dirección de la recta L, y un punto de paso $P(x_1, y_1, z_1)$. Es decir, todos los Q(x, y, z) tales que \vec{PQ} es paralelo a \vec{v}

$$\vec{PQ}||\vec{v} \Rightarrow \vec{PQ} = t\vec{v} \Rightarrow (x - x_1, y - y_1, z - z_1) = (ta, tb, tc)$$

Por lo tanto:

$$L = \left\{ \begin{array}{l} x - x_1 = \boldsymbol{t}a \\ y - y_1 = \boldsymbol{t}b \\ z - z_1 = \boldsymbol{t}c \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x = \boldsymbol{t}a + x_1 \\ y = \boldsymbol{t}b + y_1 \\ z = \boldsymbol{t}c + z_1 \end{array} \right. \Rightarrow \frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$

Sii $a \neq 0, b \neq 0, c \neq 0$

Planos en \mathbb{R}^3

Un plano en \mathbb{R}^3 está caracterizado por un **vector normal** N=(a,b,c) y un punto de paso P_0 . Todo Q que pertenece al plano cumple que:

$$\vec{P_0Q} \perp N \Rightarrow \vec{P_0Q} \cdot N = 0$$

$$(x - x_1, y - y_1, z - z_1) \cdot (a, b, c) = 0$$
$$a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$$

Ecuación general del plano

$$ax + by + cz + d = 0$$

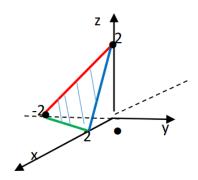
Trazas

Las trazas son las curvas que surgen de la intersección de una superficie con los planos coordenados. Por ejemplo, sea la superficie x - y + 2 = 0

$$x - y + z = 2$$

$$\frac{x}{2} + \frac{y}{-2} + \frac{z}{2} = 1$$

Fácilmente determinamos sus puntos característicos: (2,0,0);(0,-2,0);(0,0,2)



Observemos en el gráfico del plano x - y + z = 2 las **trazas** en los planos coordenados

Traza en el plano Pzy : -y+z=2 $\begin{cases} x-y+z=2\\ x=0 \end{cases}$ Traza en el plano Pxy : x-y=2 $\begin{cases} x^{-1}y+z=2\\ z=0 \end{cases}$

Traza en el plano Pxz : x+z=2 $\begin{cases} x-y+z=2\\ y=0 \end{cases}$

Ángulo entre planos

$$\cos(\alpha) = \frac{|\vec{n_1} \cdot \vec{n_2}|}{|\vec{n_1}||\vec{n_2}|}$$

1.3 Superficies

Dependiendo de si estamos en \mathbb{R}^2 o en \mathbb{R}^3 una ecuación puede representar distintas gráficas. Es importante antes de analizar la ecuación, especificar el espacio en el que estamos trabajando.

1.3.1 Plano

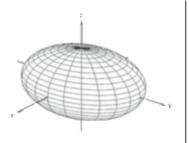
- Posee todas las variables linales. Es decir, están a la potencia 1.
- Su ecuación está compuesta por una sola igualdad (espacio dimensiones de la superficie = n de ecuaciones).
- Ejemplo:

$$3x + 2y + z = 0$$

1.3.2 Cilindro

- La ecuación del cilindro se caracteriza SIEMPRE falta una variable, y las demás variables no son lineales.
- La variable faltante indica determina el eje al cual la generatriz es paralelo.

1.3.3 Cuádricas



Elipsoide

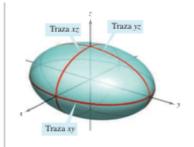
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

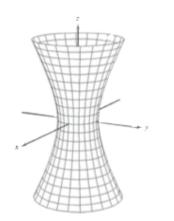
Traza

Plano

Elipse Paralelo al plano xy
Elipse Paralelo al plano xz
Elipse Paralelo al plano yz

La superficie es una esfera si $a = b = c \neq 0$.





Hiperboloide de una hoja

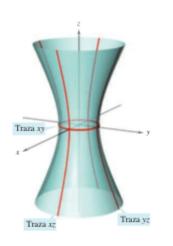
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

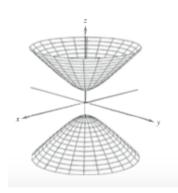
Traza

Plano

Elipse Paralelo al plano xy Hipérbola Paralelo al plano xz Hipérbola Paralelo al plano yz

El eje del hiperboloide corresponde a la variable cuyo coeficiente es negativo.





Hiperboloide de dos hojas

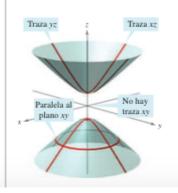
$$\frac{z^2}{2} - \frac{x^2}{2} - \frac{y^2}{2} =$$

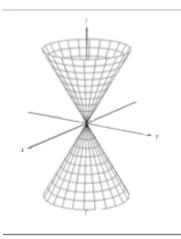
Traza

Plano

Elipse Paralelo al plano xy Hipérbola Paralelo al plano xz Hipérbola Paralelo al plano yz

El eje del hiperboloide corresponde a la variable cuyo coeficiente es positivo. No hay traza en el plano coordenado perpendicular a este eje



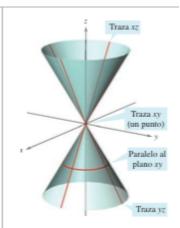


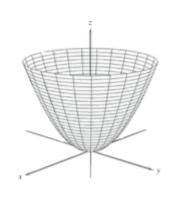
Cono elíptico

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

Elipse Paralelo al plano xy Paralelo al plano xz Hipérbola Hipérbola Paralelo al plano yz

El eje del cono corresponde a la variable cuyo coeficiente es negativo. Las trazas en los planos coordenados paralelos a este eje son rectas que se cortan.





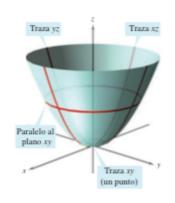
Paraboloide elíptico

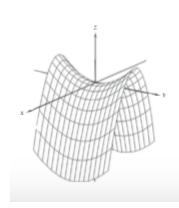
$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Traza

Paralelo al plano xy Elipse Parábola Paralelo al plano xz Paralelo al plano yz Parábola

El eje del paraboloide corresponde a la variable elevada a la primera potencia.





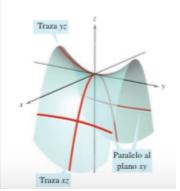
Paraboloide hiperbólica

$$z = \frac{y^2}{b^2} - \frac{x^2}{a^2}$$

Traza

Paralelo al plano xy Hipérbola Parábola Paralelo al plano xz Parábola Paralelo al plano yz

El eje del paraboloide corresponde a la variable elevada a la primera potencia.



Curvas de Nivel 1.4

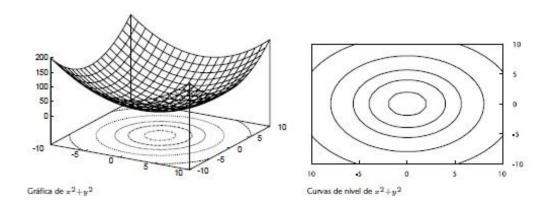
Las curvas de nivel son una forma de afrontar una representación gráfica tridimensional en el plano. Consiste en interesectar una superficie con distintos planos equidistantes, y proyectar dicha traza en un solo plano.

Se denomina curva de nivel a la proyección de la intersección de la superficie con planos paralelos

al plano coordenado xy, sobre el plano xy:

$$\begin{cases} z = f(x, y) \\ z = k \end{cases}$$

Donde k toma valores consecutivos $k = \{1, 2, 3, \dots, n\}$



Al analizar las distancias entre las distintas curvas de nivel, podemos obtener información sobre la tasa de crecimiento o decrecimiento de la gráfica tridimensional.

1.5 Límite y Continuidad de Funciones de n Variables

1.5.1 Definición de distancia entre dos puntos

Si $P(x_1, x_2, ..., x_n)$ y $A(a_1, a_2, ..., a_n)$ son dos puntos de \mathbb{R}^n . La distancia entre P y A se define como:

$$||P - A|| = \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2 + \dots + (x_n - a_n)^2}$$

1.5.2 Definición de bola en \mathbb{R}^n

Se define bola abierta al conjunto de los puntos P de \mathbb{R}^n tales que:

$$||P - A|| < r$$

Se define bola cerrada al conjunto de los puntos P de \mathbb{R}^n tales que:

$$||P - A|| \le r$$

1.5.3 Definición de Límite

Sea f una función de n variables definida en alguna bola abierta $B_{\delta}^*(A) \subset D$, con D dominio de la función, excepto posiblemente en el punto A. Entonces **el límite de** f(P) **conforme P tiende a A es L**, lo cual se denota:

$$\lim_{P \to A} f(P) = L$$

si para cualquier $\epsilon > 0$, existe $\delta > 0$ tal que

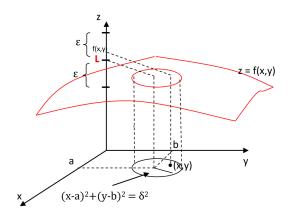
$$0 < ||P - A|| < \delta \Rightarrow |f(P) - L| < \epsilon$$

Si f es una función de dos variables independientes:

$$\lim_{(x,y)\to(a_1,a_2)} f(x,y) = L$$

si para cualquier $\epsilon > 0$, existe $\delta > 0$ tal que

$$0 < \sqrt{(x - a_1)^2 + (y - a_2)^2} < \delta \Rightarrow |f(x, y) - L| < \epsilon$$



Importante: Para que exista el límite doble, el valor de L debe ser el mismo por cualquier trayectoria considerada que pase por A.

1.5.4 Criterio para inexistencia del límite doble

Si una función f tiene límites distintos a lo largo de dos trayectorias diferentes par las cuales (x,y) tiende al punto (a_1,a_2) entonces $\lim_{(x,y)\to(a_1,a_2)} f(x,y) = L$ no existe.

1.5.5 Propiedades de los límites

$$\lim_{(x,y) \to (a,b)} f(x,y) = L \quad y \quad \lim_{(x,y) \to (a,b)} g(x,y) = M$$

1.
$$\lim_{(x,y)\to(a,b)} [f(x,y)\pm g(x,y)] = L\pm M$$

2.
$$\lim_{(x,y)\to(a,b)} [f(x,y). g(x,y)] = L.M$$

3.
$$\lim_{(x,y)\to(a,b)} k f(x,y) = k L$$

4.
$$\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{L}{M}, M \neq 0$$

1.5.6 Continuidad de funciones de dos variables

Una función de dos variables se denomina continua en (a,b) sí y solo sí se cumple $\lim_{(x,y)\to(a_1,a_2)} f(x,y) = f(a_1,a_2)$

- •Si k es un número real, f y g funciones continuas en (a,b) entonces las siguientes funciones son continuas en (a,b):
 - 1. kf 2. f.g 3. f \pm g 4. f/g si g(a,b) \neq 0
- Si h es continua en (a,b) y g es continua en h(a,b) entonces la función compuesta f= g(h) es continua en (a,b)
- Las funciones polinómicas de dos variables son continuas en el plano.
- Las funciones racionales son continuas en todo su dominio.

Unidad 2

Cálculo Diferencial en n-variables

2.1 Derivadas Parciales

Definición de función derivada parcial en 2 variables

Sea f una función de las variables x e y, la derivada parcial de f con respecto a x es la función, denotada $f_x(x,y)$ tal que su valor en cualquier punto de su dominio es:

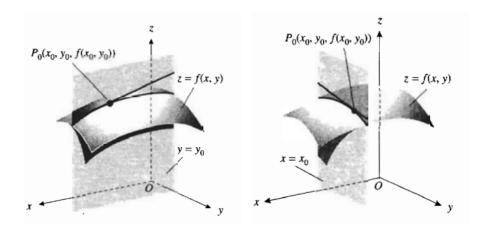
$$f_x(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

si el límite existe. Semejantemente la derivada parcial de f con respecto a y, denotada $f_y(x, y)$, tal que su valor en cualquier punto del dominio está dado por:

$$f_y(x,y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

si existe el límite.

Representación Geométrica



2.1.1 Pendiente de una superficie

Los valores de $f_x(a,b)$ y $f_y(a,b)$ determinan la pendiente de la superficie definida por z = f(x,y) en el punto P(a,b,f(a,b)) en las direcciones x e y respectivamente.

2.1.2 Derivadas parciales de órdenes superiores

Si f es una función de dos variables, entonces sus derivadas parciales también son funciones de dos variables, y por lo tanto se les puede determinar las derivadas parciales. Y así sucesivamente conseguimos las derivadas parciales de órdenes superiores. Resultado que se extiende a las funciones de n variables independientes.

2.1.3 Teorema de Clairaut (sobre derivadas parciales cruzadas)

Sea f definida en un disco abierto D que contiene al punto (a,b). Si las funciones f_{xy} y f_{yx} son continuas en D entonces $f_{xy}(a,b) = f_{yx}(a,b)$

2.2 Funciones Diferenciables

2.2.1 Definición de Incremento

Si z = f(x, y), con h: incremento de x y k: incremento de y.

$$\Delta z = \Delta f(x, y) = f(x + h, y + k)$$

2.2.2 Definición de función diferenciable en (a,b)

Una función dada por z = f(x, y) es diferenciable en (a, b) si su incremento se puede expresar por:

$$\Delta z(h,k) = f_x(a,b)h + f_y(a,b)k + \epsilon_1 h + \epsilon_2 k$$

con ϵ_1 y ϵ_2 funciones de (h, k), tales que:

$$\lim_{(h,k)\to(0,0)} \epsilon_1(h,k) = 0 \qquad \qquad \wedge \qquad \lim_{(h,k)\to(0,0)} \epsilon_2(h,k) = 0$$

2.2.3 Teorema (condición suficiente para la diferenciabilidad)

Si f es una función definida por z=f(x,y), siendo f_x , f_y continuas en (a,b), entonces f es diferenciable en (a,b).

2.2.4 Definición de diferencial o diferencial total.

Sea la función z = f(x, y) y Δx , Δy sus incrementos respectivamente, entonces la **diferencial** total de z es:

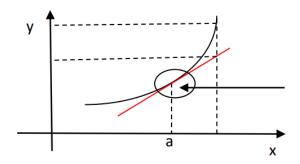
$$dz = f_x(x, y)\Delta x + f_y(x, y)\Delta y$$

Como x e y son variables independientes $\Delta x = dx$ y $\Delta y = dy$:

$$dz = f_x(x, y)dx + f_y(x, y)dy$$

2.2.5 Aproximación con diferenciales (recta tangente)

Una de las ideas más importantes del cálculo de una variable, es el hecho de que al acercarnos a un punto sobre la gráfica de la función diferenciable en dicho punto, la gráfica y la recta tangente a la misma prácticamente se confunden.



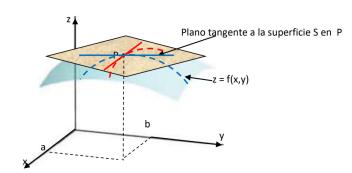
Por ejemplo, se desea aproximar la función $f(x) = \ln x$ en el punto (1,0). Ecuación de la recta tangente en (1,0)

$$f(x) = \ln x \Rightarrow f'(x) = \frac{1}{x}$$
$$y - 0 = f'(x)(x - 1) \Rightarrow L(x) = y = x - 1$$

Ahora puedo usar L(x) para aproximar el logaritmo en valores cercanos al (1,0)

2.2.6 Aproximación con diferenciales (plano tangente)

Sea z = f(x, y), que define una superficie S, con derivadas parciales de primer orden continuas en (a, b), y un punto P(a, b, f(a, b)) en S.



$$C_1 = \begin{cases} z = f(x,y) & \text{Rtg} \to m = f_x(a,b) \\ y = b & \end{cases}$$

$$C_2 = \begin{cases} z = f(x,y) & \text{Rtg} \to m = f_y(a,b) \\ x = a & \end{cases}$$

La ecuación del plano tangente en el punto P(a, b, f(a, b)):

$$A(x-a) + B(y-b) + C(z - f(x,y)) = 0$$

Despejando el término con z, y dividiendo en C m.a.m.:

$$z - f(a,b) = -\frac{A}{C}(x-a) - \frac{B}{C}(y-b)$$

$$z - f(a,b) = h(x-a) + k(y-b)$$

Donde h y k son las derivadas parciales en dicho punto (incrementos de las variables).

$$z - f(a, b) = f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

Queda entonces definida la función z = L(x, y)

$$L(x,y) = f_x(a,b)(x-a) + f_y(a,b)(y-b) + f(a,b)$$

$$L(x,y) = f_x(a,b)dx + f_y(a,b)dx + f(a,b)$$

$$L(x,y) = dz + f(a,b)$$

Por lo tanto, la aproximación:

$$f(a + \Delta x, b + \Delta y) \approx df(a, b) + f(a, b)$$

2.2.7 Teorema: Diferenciabilidad implica continuidad.

Si una función definida por z = f(x, y) es diferenciable en (a, b) entonces es continua en (a, b).

Demostración

Suponiendo que f es diferenciable P_0 , con $P_0 \in D^o$ tenemos que probar que:

$$\lim_{P \to P_0} f(P) = f(P_0) \Rightarrow \lim_{P \to P_0} [f(P) - f(P_0)] = 0$$

Por lo tanto

$$\lim_{P \to P_0} [f(P) - f(P_0)] = \lim_{(h,k) \to (0,0)} [f(x_0 + h, y_0 + k) - f(x_0, y_0)]$$

Puesto que f es diferenciable en P_0 por hipótesis:

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = f_x(x_0, y_0)h + f_y(x_0, y_0)k + \epsilon_1 h + \epsilon_2 k$$

$$\lim_{(h,k)\to(0,0)} [f(x_0+h,y_0+k)-f(x_0,y_0)] = \lim_{(h,k)\to(0,0)} [f_x(x_0,y_0)h + f_y(x_0,y_0)k + \epsilon_1 h + \epsilon_2 k] = 0$$

Por lo tanto, queda entonces demostrado que:

$$\lim_{P \to P_0} [f(P) - f(P_0)] = 0$$

2.2.8 Diferencial de orden superior

$$d^{2}f = d(df) = d(f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$= \frac{d}{x}(f_{x}(x, y)dx + f_{y}(x, y)dy)dx + \frac{d}{y}(f_{x}(x, y)dx + f_{y}(x, y)dy)dy$$

$$= f_{xx}(x, y)dx^{2} + f_{yx}(x, y)dydx + f_{xy}(x, y)dxdy + f_{yy}(x, y)dy^{2}$$

$$= f_{xx}(x, y)dx^{2} + 2f_{yx}(x, y)dydx + f_{yy}(x, y)dy^{2}$$

2.3 Regla de la Cadena

2.3.1 Regla de la cadena para f(x,y) con x(t),y(t)

Sea z = f(x, y) una función de dos variables independientes, donde x = g(t) y y = h(t) son funciones de t diferenciables. Entonces z es una función de t diferenciable:

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Demostración

Un cambio de Δt en t produce cambios en Δx en x y en Δy en y. Estos a sus vez producen un cambio en Δz en z. De acuerdo a la definición de incremento de una función diferenciable:

$$\Delta z = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

donde $\epsilon_1 \to 0$ y $\epsilon_1 \to 0$ cuando $(\Delta x, \Delta y) \to (0, 0)$. Al dividir por Δt ambos miembros:

$$\frac{\Delta z}{\Delta t} = \frac{\partial f}{\partial x} \frac{\Delta x}{\Delta t} + \frac{\partial f}{\partial y} \frac{\Delta y}{\Delta t} + \epsilon_1 \frac{\Delta x}{\Delta t} + \epsilon_2 \frac{\Delta y}{\Delta t}$$

Si ahora $\Delta t \to 0$, $\Delta x = g(t+\Delta t) - g(t) \to 0$ y de igual manera $\Delta y = h(y+\Delta t) - g(t) \to 0$ Por lo tanto

$$\begin{split} \frac{dz}{dt} &= \lim_{\Delta t \to 0} \frac{\Delta z}{\Delta t} \\ &= \frac{\partial f}{\partial x} \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} + \frac{\partial f}{\partial y} \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} + \lim_{\Delta t \to 0} \epsilon_1 \frac{\Delta x}{\Delta t} + \lim_{\Delta t \to 0} \epsilon_2 \frac{\Delta y}{\Delta t} \\ &= \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + 0 \cdot \epsilon_1 \frac{dx}{dt} + 0 \cdot \epsilon_2 \frac{dy}{dt} \\ &= \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} \end{split}$$

2.3.2 Regla de la cadena para f(x,y) con x(s,t),y(s,t)

Sea z = f(x, y) una función de dos variables independientes, donde x = g(s, t) y y = h(s, t) son funciones de (s, t) diferenciables. Entonces z es una función de (s, t) diferenciable. La derivada parcial de z con respecto a s

$$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}$$

La derivada parcial de z con respecto a t

$$\frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$$

Demostración para $\partial z/\partial s$

Un cambio de Δs en g produce cambios en Δx en x y en Δy en y. Estos a sus vez producen un cambio en Δz en z. De acuerdo a la definición de incremento de una función diferenciable:

$$\Delta z = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

donde $\epsilon_1 \to 0$ y $\epsilon_1 \to 0$ cuando $(\Delta x, \Delta y) \to (0, 0)$. Al dividir por Δs ambos miembros:

$$\frac{\Delta z}{\Delta s} = \frac{\partial f}{\partial x} \frac{\Delta x}{\Delta s} + \frac{\partial f}{\partial y} \frac{\Delta y}{\Delta s} + \epsilon_1 \frac{\Delta x}{\Delta s} + \epsilon_2 \frac{\Delta y}{\Delta s}$$

Si ahora $(\Delta s, \Delta t) \to (0,0), \ \Delta x = g(s+\Delta s, t+\Delta t) - g(s,t) \to 0$ y de igual manera $\Delta y = h(s+\Delta s, t+\Delta t) - h(s,t) \to 0$ Por lo tanto

$$\begin{split} \frac{\partial z}{\partial s} &= \lim_{(\Delta s, \Delta t) \to (0,0)} \frac{\Delta z}{\Delta t} \\ &= \frac{\partial f}{\partial x} \lim_{(\Delta s, \Delta t) \to (0,0)} \frac{\Delta x}{\Delta s} + \frac{\partial f}{\partial y} \lim_{(\Delta s, \Delta t) \to (0,0)} \frac{\Delta y}{\Delta s} + \lim_{(\Delta s, \Delta t) \to (0,0)} \epsilon_1 \frac{\Delta x}{\Delta s} + \lim_{(\Delta s, \Delta t) \to (0,0)} \epsilon_2 \frac{\Delta y}{\Delta s} \\ &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} + 0 \cdot \epsilon_1 \frac{\partial x}{\partial s} + 0 \cdot \epsilon_2 \frac{\partial y}{\partial s} \\ &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \end{split}$$

2.4 Funciones Implícitas

Sea F(x, y) y y = f(x), decimos que F define implícitamente sii:

$$F(x,y) = 0 \Rightarrow F(x,f(x)) = 0$$

2.4.1 Caso 1: Una variable dependiente, una variable independiente

Sea x e y dos variables que están relacionadas de forma implícita (F(x,y)=0) donde y=f(x):

$$F(x, f(x)) = 0$$

$$F_x \frac{dx}{dx} + F_y \frac{dy}{dx} = 0$$

$$F_x + F_y \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

2.4.2 Caso 2: Una variable dependiente, dos variables independientes

Sea F(x,y,z) tales que z(x,y). En este caso tendremos las derivadas parciales de z_x y z_y . Quiero buscar z_x :

$$F(x, y, z) = 0$$

$$F_x \frac{\partial x}{\partial x} + F_y \frac{\partial y}{\partial x} + F_z \frac{\partial z}{\partial x} = 0$$

$$F_x + F_z \frac{\partial z}{\partial x} = 0$$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$

Quiero buscar z_y :

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

2.4.3 Caso 3: 2 variables dependientes y dos variables independientes

Sea el sistema:

$$\begin{cases} F(x, y, z, t) = 0 \\ G(x, y, z, t) = 0 \end{cases}$$

Con x(z,t) e y(z,t). Podemos obtener entonces x_z , y_z , x_t e y_t . Derivando mediante la Regla de la Cadena con respecto a **z** para obtener:

$$\begin{cases} F_x x_z + F_y y_z + F_z z_z + F_t t_z = 0 \\ G_x x_z + G_y y_z + G_z z_z + G_t t_z = 0 \end{cases}$$

$$\begin{cases} F_x x_z + F_y y_z = -F_z \\ G_x x_z + G_y y_z = -G_z \end{cases}$$

Por lo tanto, definimos el determinante del sistema como Δ :

$$\Delta = \left| \begin{array}{cc} F_x & F_y \\ G_x & G_y \end{array} \right|$$

Por lo tanto

$$x_z = \frac{-\left|\begin{array}{cc} F_z & F_y \\ G_z & G_y \end{array}\right|}{\Delta}$$

$$y_z = \frac{-\left|\begin{array}{cc} F_x & F_z \\ G_x & G_z \end{array}\right|}{\Delta}$$

2.5 Derivada Direccional

Sea f una función $f: A \subset \mathbb{R}^2 \to \mathbb{R}$, $P_0 = (a, b) \in A^o$, $\vec{u} = (u_1, u_2)$ unitario. Se define la derivada direccional de f en P_0 en la dirección del vector \vec{u} , y se denota $D_{\vec{u}}f(P_0)$ a:

$$D_{\vec{u}}f(P_0) = \lim_{t \to 0} \frac{f(a + tu_1, b + tu_2) - f(a, b)}{t}$$

si el límite existe.

2.5.1 Derivada direccional en funciones diferenciables

Si f es una función diferenciable en x en y, entonces f tiene una derivada direccional en la dirección del vector unitario $\vec{u} = (u_1, u_2)$

$$D_{\vec{u}}f(P_0) = f_x(x,y)u_1 + f_y(x,y)u_2$$

2.5.2 Demostración: Derivada direccional en funciones diferenciables

Se define una función g de una sola variable t mediante

$$q(t) = f(x_0 + tu_1, y_0 + tu_2)$$

entonces según la definición de derivada

$$g'(0) = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = \lim_{t \to 0} \frac{f(x_0 + tu_1, y_0 + tu_2) - f(x_0, y_0)}{t} = D_{\vec{u}} f(P_0)$$

Por otro lado, puede escribir g(t) = f(x, y) donde $x = x_0 + tu_1$ e $y = y_0 + tu_2$, de modo que la regla de la cadena da:

$$g'(t) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = f_x(x, y)u_1 + f_y(x, y)u_2$$

Si ahora t = 0, entonces $x = x_0$ e $y = y_0$

$$g'(0) = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2$$

De las ecuaciones anteriores llegamos a que:

$$D_{\vec{u}}f(P_0) = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2$$

Si el vector unitario forma un ángulo θ con el eje positivo x:

$$D_{\vec{u}}f(P_0) = f_x(x_0, y_0)\cos\theta + f_y(x_0, y_0)\sin\theta$$

2.5.3 Vector gradiente ∇f

Sea una función $f:A\subset R^2\to R$, donde existen las derivadas parciales f_x y f_y . Entonces el gradiente de la función f, denotado ∇f , es el vector:

$$\vec{\nabla f}(x,y) = (f_x(x,y), f_y(x,y))$$

En particula, para el punto (a, b)

$$\vec{\nabla f}(a,b) = (f_x(a,b), f_y(a,b))$$

2.5.4 Condición necesaria para diferenciabilidad

Sea f una función $f:A\subset R^2\to R,\ P_0=(a,b)\in A^o,\ \vec{u}=(u_1,u_2)$ vector unitario en R^2 . Se dice que:

Si f es diferenciable en
$$P_0 \Rightarrow D_{\vec{u}} f(P_0) = \nabla f(\vec{P_0}) \cdot \vec{u}$$

Demostración

Consideramos a, b, u_1, u_2 puntos fijos (arbitrarios) y definimos la función:

$$g(t) = f(a + tu_1, b + tu_2)$$

Derivable por estar definida por f, la cual es diferenciable en el punto P_0 . Calculando g'(0)

$$g'(0) = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = \lim_{t \to 0} \frac{f(a + tu_1, b + tu_2) - f(a, b)}{t} = D_{\vec{u}} f(P_0)$$
[1]

Por otro lado, realizando la composición g(t)=f(x,y), con $x=a+tu_1$ e $y=b+tu_2$

$$g'(t) = f_x(x,y)\frac{dx}{dt} + f_y(x,y)\frac{dy}{dt}$$

$$g'(t) = f_x(x,y)u_1 + f_y(x,y)u_2$$

Para un t = 0

$$g'(0) = f_x(a,b)u_1 + f_y(a,b)u_2 = \nabla f(\vec{P_0}) \cdot \vec{u}$$
 [2]

De [1] y [2] tenemos que:

$$D_{\vec{u}}f(P_0) = \nabla f(P_0) \cdot \vec{u}$$

2.5.5 Dirección de la máxima y mínima derivada direccional

La máxima derivada direccional en P_0 se da en la dirección del vector gradiente normalizado

$$\max \vec{u} = \frac{\nabla f(\vec{P}_0)}{||\nabla f(\vec{P}_0)||}$$

La mínima derivada direccional en P_0 se da en la dirección del opuesto del vector gradiente normalizado

$$\min \vec{u} = -\frac{\nabla \vec{f(P_0)}}{||\nabla \vec{f(P_0)}||}$$

Demostración

Por teorema condición necesaria para la diferenciabilidad:

$$D_{\vec{u}}f(P_0) = \nabla f(\vec{P_0}) \cdot \vec{u}$$

Por propiedad del producto escalar entre vectores

$$D_{\vec{u}}f(P_0) = ||\nabla f(P_0)|| \cdot ||\vec{u}|| \cdot \cos \theta$$

Como $-1 \le \cos \theta \le 1$, el valor máximo se da cuando el $\cos \theta = 1 \Rightarrow \theta = 0$, es decir $\nabla f(\vec{P}_0) \parallel \vec{u}$

2.5.6 Valor máximo y mínimo de la derivada direccional

Valor máximo

$$||\nabla \vec{f(P_0)}||$$

Valor mínimo

$$||-\nabla \vec{f(P_0)}||$$

2.6 Valores extremos en funciones de dos variables

2.6.1 Definición de extremo absoluto

Sea una función $f:A\subset R^2\to R,\,P_0\in A$ decimos que:

- f alcanza en P_0 el **máximo absoluto** si y solo si $\forall P \in A, f(P) \leq f(P_0)$
- f alcanza en P_0 el **mínimo absoluto** si y solo si $\forall P \in A, f(P) \geq f(P_0)$

Teorema del valor extremo

Toda función continua en \mathbb{R}^2 , definida en un conjunto cerrado y acotado, alcanza máximo absoluto y mínimo absoluto.

2.6.2 Definición de extremo relativo

Sea una función $f:A\subset R^2\to R,\,P_0\in A^o$ decimos que:

- f alcanza en P_0 un **máximo relativo** o $f(P_0)$ es un máximo relativo si y solo si $\exists D \subset A, f(P) \geq f(P_0)$
- f alcanza en P_0 un **mínimo relativo** o $f(P_0)$ es un mínimo relativo si y solo si $\exists D \subset A, f(P) \leq f(P_0)$

2.6.3 Punto Crítico

Si $f: A \subset \mathbb{R}^2 \to \mathbb{R}, P_0 \in A^o$ tal que no existe una o ambas derivadas parciales en P_0 o bien existen ambas derivadas parciales en P_0 y cumplen que:

$$f_x(P_0) = f_y(P_0) = 0$$

Decimo que P_0 es un punto crítico de f

2.6.4 Condición necesaria para la existencia de extremos relativos

Sean $f: A \subset \mathbb{R}^2 \to \mathbb{R}$, y $P_0 \in A^o$ tales que $f(P_0)$ es un extremo relativo de f entonces P_0 es un punto crítico de f

Demostración caso 1

Sea $(a,b) \in D$, tal que f(a,b) es un valor extremo relativo de f, tal que $f_x(a,b)$ o $f_y(a,b)$ no existe, entonces (a,b) es un punto crítico de f

Demostración caso 2

Sea $(a,b) \in D$, tal que f(a,b) es un valor extremo relativo de f, tal que $f_x(a,b)$ o $f_y(a,b)$ existen, armamos una función g de una variable independiente. g(x) = f(x,b) tiene extremo relativo en x = a por hipótesis.

$$\therefore g'(a) = 0 \Rightarrow g'(a) = \lim_{h \to 0} \frac{g(a+h) - g(a)}{h} = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} = f_x(a,b) \therefore f_x(a,b) = 0$$

De igual forma, trabajamos con la variable y t(y) = f(a, y) tiene extremo relativo en y = b por hipótesis.

$$\therefore t'(b) = 0 \Rightarrow t'(b) = \lim_{h \to 0} \frac{t(b+h) - t(b)}{h} = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h} = f_y(a,b) \therefore f_y(a,b) = 0$$

Puesto que $f_x(a,b) = f_y(a,b) = 0$, f posee un punto crítico en (a,b)

2.6.5 Punto Silla

Sean $f: A \subset \mathbb{R}^2 \to \mathbb{R}$, y $P_0 \in A$ si P_0 es un punto crítico de f y en P_0 la función no tiene extremo relativo, entonces decimos que P_0 es un punto silla.

2.6.6 Condición suficiente para localizar extremos relativos

Sean $f: A \subset \mathbb{R}^2 \to \mathbb{R}$, y $P_0 \in A$ tales que $f_x(P_0) = f_y(P_0) = 0$ y las derivadas parciales de f hasta el orden 2 son continuas y no todas nulas en un entorno de P_0 , entonces:

$$H(P_0) = \begin{vmatrix} f_{xx} & f_{yx} \\ f_{xy} & f_{yy} \end{vmatrix}$$

- 1. Si $H(P_0) > 0 \Rightarrow f$ tiene extremo relativo en P_0
 - Si $f_{xx}(P_0) > 0 \Rightarrow f(P_0)$ es un mínimo relativo (m_r)
 - Si $f_{xx}(P_0) < 0 \Rightarrow f(P_0)$ es un máximo relativo (M_r)
- 2. Si $H(P_0) < 0 \Rightarrow f$ no tiene extremo relativo en P_0
- 3. Si $H(P_0) = 0$ el criterio no decide